EFTofLSS meets simulation-based inference: σ 8 from biased tracers

Author:

Tucci BeatrizORCID,Schmidt FabianORCID

Abstract

Abstract Cosmological inferences typically rely on explicit expressions for the likelihood and covariance of the data vector, which normally consists of a set of summary statistics. However, in the case of nonlinear large-scale structure, exact expressions for either likelihood or covariance are unknown, and even approximate expressions can become very cumbersome, depending on the scales and summary statistics considered. Simulation-based inference (SBI), in contrast, does not require an explicit form for the likelihood but only a prior and a simulator, thereby naturally circumventing these issues. In this paper, we explore how this technique can be used to infer σ 8 from a Lagrangian effective field theory (EFT) based forward model for biased tracers. The power spectrum and bispectrum are used as summary statistics to obtain the posterior of the cosmological, bias and noise parameters via neural density estimation. We compare full simulation-based inference with cases where the data vector is drawn from a Gaussian likelihood with sample and analytical covariances. We conclude that, for k max = 0.1hMpc-1 and 0.2hMpc-1, the form of the covariance is more important than the non-Gaussianity of the likelihood, although this conclusion is expected to depend on the cosmological parameter inferred, the summary statistics considered and range of scales probed.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3