Galaxy clustering from the bottom up: a streaming model emulator I

Author:

Cuesta-Lazaro Carolina12,Nishimichi Takahiro34,Kobayashi Yosuke5,Ruan Cheng-Zong1ORCID,Eggemeier Alexander6ORCID,Miyatake Hironao74ORCID,Takada Masahiro4,Yoshida Naoki84,Zarrouk Pauline9,Baugh Carlton M12ORCID,Bose Sownak1ORCID,Li Baojiu1ORCID

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

2. Institute for Data Science, Durham University , South Road, Durham DH1 3LE, UK

3. Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University , Kyoto 606-8502, Japan

4. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo , Chiba 277-8583, Japan

5. Department of Astronomy/Steward Observatory, University of Arizona , 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

6. Argelander Institut für Astronomie der Universität Bonn , Auf dem Hügel 71, D-53121 Bonn, Germany

7. Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University , Nagoya 464-8602, Japan

8. Department of Physics, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

9. Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE) , 4 place Jussieu, F-75252 Paris Cedex 5, France

Abstract

ABSTRACT In this series of papers, we present a simulation-based model for the non-linear clustering of galaxies based on separate modelling of clustering in real space and velocity statistics. In the first paper, we present an emulator for the real-space correlation function of galaxies, whereas the emulator of the real-to-redshift space mapping based on velocity statistics is presented in the second paper. Here, we show that a neural network emulator for real-space galaxy clustering trained on data extracted from the dark quest suite of N-body simulations achieves sub-per cent accuracies on scales 1 < r < 30 $h^{-1} \, \mathrm{Mpc}$, and better than 3 per cent on scales r < 1 $h^{-1}\, \mathrm{Mpc}$ in predicting the clustering of dark-matter haloes with number density 10−3.5$(h^{-1}\, \mathrm{Mpc})^{-3}$, close to that of SDSS LOWZ-like galaxies. The halo emulator can be combined with a galaxy–halo connection model to predict the galaxy correlation function through the halo model. We demonstrate that we accurately recover the cosmological and galaxy–halo connection parameters when galaxy clustering depends only on the mass of the galaxies’ host halos. Furthermore, the constraining power in σ8 increases by about a factor of 2 when including scales smaller than 5 $h^{-1} \, \mathrm{Mpc}$. However, when mass is not the only property responsible for galaxy clustering, as observed in hydrodynamical or semi-analytic models of galaxy formation, our emulator gives biased constraints on σ8. This bias disappears when small scales (r < 10 $h^{-1}\, \mathrm{Mpc}$) are excluded from the analysis. This shows that a vanilla halo model could introduce biases into the analysis of future data sets.

Funder

UK Research and Innovation

STFC

UKRI

MEXT

JSPS

Japan Science and Technology Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3