Making BEASTies: dynamical formation of planetary systems around massive stars

Author:

Parker Richard J1ORCID,Daffern-Powell Emma C1ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of Sheffield , Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

Abstract

ABSTRACT Exoplanets display incredible diversity, from planetary system architectures around Sun-like stars that are very different from our Solar system, to planets orbiting post-main-sequence stars or stellar remnants. Recently, the B-star Exoplanet Abundance STudy (BEAST) reported the discovery of at least two super-Jovian planets orbiting massive stars in the Sco Cen OB association. Whilst such massive stars do have Keplerian discs, it is hard to envisage gas giant planets being able to form in such hostile environments. We use N-body simulations of star-forming regions to show that these systems can instead form from the capture of a free-floating planet or the direct theft of a planet from one star to another, more massive star. We find that this occurs on average once in the first 10 Myr of an association’s evolution, and that the semimajor axes of the hitherto confirmed BEAST planets (290 and 556 au) are more consistent with capture than theft. Our results lend further credence to the notion that planets on more distant (>100 au) orbits may not be orbiting their parent star.

Funder

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3