A Universal Stellar Initial Mass Function? A Critical Look at Variations

Author:

Bastian Nate1,Covey Kevin R.23,Meyer Michael R.45

Affiliation:

1. Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, United Kingdom;

2. Department of Astronomy, Cornell University, Ithaca, New York 14853;

3. Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

4. Institute of Astronomy, ETH Zürich, 8093 Zürich, Switzerland;

5. Steward Observatory, The University of Arizona, Tucson, Arizona 85721

Abstract

Whether the stellar initial mass function (IMF) is universal or is instead sensitive to environmental conditions is of critical importance: The IMF influences most observable properties of stellar populations and thus galaxies, and detecting variations in the IMF could provide deep insights into the star formation process. This review critically examines reports of IMF variations, with a view toward whether other explanations are sufficient given the evidence. Studies of the field, young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal system IMF: a power law of Salpeter index (Γ = 1.35) above a few solar masses, and a log normal or shallower power law (Γ ∼ 0–0.25) for lower mass stars. The shape and universality of the substellar IMF is still under investigation. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a universal IMF, suggesting no gross variations over much of cosmic time. Indications of “nonstandard” IMFs in specific local and extragalactic environments clearly warrant further study. However, there is no clear evidence that the IMF varies strongly and systematically as a function of initial conditions after the first few generations of stars.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 803 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3