Estimating dominance genetic variances for growth traits in American Angus males using genomic models

Author:

Garcia-Baccino Carolina A1ORCID,Lourenco Daniela A L2,Miller Stephen3,Cantet Rodolfo J C14,Vitezica Zulma G5

Affiliation:

1. Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina

2. Department of Animal and Dairy Science, University of Georgia, Athens, GA

3. Angus Genetics Inc., St. Joseph, MO

4. INPA, UBA-CONICET, Buenos Aires, Argentina

5. INP ENSAT, UMR 1388 GenPhySE, Castanet-Tolosan, France

Abstract

Abstract Estimates of dominance variance for growth traits in beef cattle based on pedigree data vary considerably across studies, and the proportion of genetic variance explained by dominance deviations remains largely unknown. The potential benefits of including nonadditive genetic effects in the genomic model combined with the increasing availability of large genomic data sets have recently renewed the interest in including nonadditive genetic effects in genomic evaluation models. The availability of genomic information enables the computation of covariance matrices of dominant genomic relationships among animals, similar to matrices of additive genomic relationships, and in a more straightforward manner than the pedigree-based dominance relationship matrix. Data from 19,357 genotyped American Angus males were used to estimate additive and dominant variance components for 3 growth traits: birth weight, weaning weight, and postweaning gain, and to evaluate the benefit of including dominance effects in beef cattle genomic evaluations. Variance components were estimated using 2 models: the first one included only additive effects (MG) and the second one included both additive and dominance effects (MGD). The dominance deviation variance ranged from 3% to 8% of the additive variance for all 3 traits. Gibbs sampling and REML estimates showed good concordance. Goodness of fit of the models was assessed by a likelihood ratio test. For all traits, MG fitted the data as well as MGD as assessed either by the likelihood ratio test or by the Akaike information criterion. Predictive ability of both models was assessed by cross-validation and did not improve when including dominance effects in the model. There was little evidence of nonadditive genetic variation for growth traits in the American Angus male population as only a small proportion of genetic variation was explained by nonadditive effects. A genomic model including the dominance effect did not improve the model fit. Consequently, including nonadditive effects in the genomic evaluation model is not beneficial for growth traits in the American Angus male population.

Funder

UBACyT

INRA-SELGEN EpiNet

Saint-Exupéry

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3