Genome‐wide association studies for additive and dominance effects for body composition traits in commercial crossbred Piétrain pigs

Author:

Heidaritabar Marzieh1ORCID,Bink Marco C. A. M.2,Dervishi Elda1,Charagu Patrick3,Huisman Abe2,Plastow Graham S.1

Affiliation:

1. Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta Canada

2. Hendrix Genetics Research Technology & Services B.V. Boxmeer the Netherlands

3. Hendrix Genetics Swine Business Unit Regina Saskatchewan Canada

Abstract

AbstractFat depth (FD) and muscle depth (MD) are economically important traits and used to estimate carcass lean content (LMP), which is one of the main breeding objectives in pig breeding programmes. We assessed the genetic architectures of body composition traits for additive and dominance effects in commercial crossbred Piétrain pigs using both 50 K array and sequence genotypes. We first performed a genome‐wide association study (GWAS) using single‐marker association analysis with a false discovery rate of 0.1. Then, we estimated the additive and dominance effects of the most significant variant in the quantitative trait loci (QTL) regions. It was investigated whether the use of whole‐genome sequence (WGS) will improve the QTL detection (both additive and dominance) with a higher power compared with lower density SNP arrays. Our results showed that more QTL regions were detected by WGS compared with 50 K array (n = 54 vs. n = 17). Of the novel associated regions associated with FD and LMP and detected by WGS, the most pronounced peak was on SSC13, situated at ~116–118, 121–127 and 129–134 Mbp. Additionally, we found that only additive effects contributed to the genetic architecture of the analysed traits and no significant dominance effects were found for the tested SNPs at QTL regions, regardless of panel density. The associated SNPs are located in or near several relevant candidate genes. Of these genes, GABRR2, GALR1, RNGTT, CDH20 and MC4R have been previously reported as being associated with fat deposition traits. However, the genes on SSC1 (ZNF292, ORC3, CNR1, SRSF12, MDN1, TSHZ1, RELCH and RNF152) and SSC18 (TTC26 and KIAA1549) have not been reported previously to our best knowledge. Our current findings provide insights into the genomic regions influencing composition traits in Piétrain pigs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Animal Science and Zoology,Food Animals,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3