The relationship of pork carcass weight and leanness parameters in the Ontario commercial pork industry

Author:

Barducci Robson S1,Zhou Ziyu Y1,Wormsbecher Lisa2,Roehrig Colleen2,Tulpan Dan3,Bohrer Benjamin M1ORCID

Affiliation:

1. Department of Food Science, University of Guelph, Guelph, Ontario, Canada

2. Conestoga Meat Packers Ltd., Breslau, Ontario, Canada

3. Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada

Abstract

Abstract This study aimed to examine the correlation of carcass weight, fat depth, muscle depth, and predicted lean yield in commercial pigs. Data were collected on 850,819 pork carcasses from the same pork processing facility between October 2017 and September 2018. Hot carcass weight was reported following slaughter as a head-on weight; while fat and muscle depth were measured with a Destron PG-100 probe and used for the calculation of predicted lean yield based on the Canadian Lean Yield (CLY) equation [CLY (%) = 68.1863 − (0.7833 × fat depth) + (0.0689 × muscle depth) + (0.0080 × fat depth2) − (0.0002 × muscle depth2) + (0.0006 × fat depth × muscle depth)]. Descriptive statistics, regression equations including coefficients of determination, and Pearson product moment correlation coefficients (when assumptions for linearity were met) and Spearman’s rank-order correlation coefficients (when assumptions for linearity were not met) were calculated for attributes using SigmaPlot, version 11 (Systat Software, Inc., San Jose, CA). Weak positive correlation was observed between hot carcass weight and fat depth (r = 0.289; P < 0.0001), and between hot carcass weight and muscle depth (r = 0.176; P < 0.0001). Weak negative correlations were observed between hot carcass weight and predicted lean yield (r = −0.235; P < 0.0001), and between fat depth and muscle depth (r = −0.148; P < 0.0001). Upon investigation of relationships between fat depth and predicted lean yield, and between muscle depth and predicted lean yield using scatter plots, it was determined that these relationships were not linear and therefore the assumptions of Pearson product moment correlation were not met. Thus, these relationships were expressed as nonlinear functions and Spearman’s rank-order correlation coefficients were used. A strong negative correlation was observed between fat depth and predicted lean yield (r = −0.960; P < 0.0001), and a moderate positive correlation was observed between muscle depth and predicted lean yield (r = 0.406; P < 0.0001). Results from this dataset revealed that hot carcass weight was generally weakly correlated (r < |0.35|) with fat depth, muscle depth, and predicted lean yield. Therefore, it was concluded that there were no consistent weight thresholds where pigs were fatter or heavier muscled.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3