On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability

Author:

Evangelou Nikolaos1,Wichrowski Noah J2,Kevrekidis George A3,Dietrich Felix4ORCID,Kooshkbaghi Mahdi5ORCID,McFann Sarah67ORCID,Kevrekidis Ioannis G12

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218, USA

2. Department of Applied Mathematics and Statistics, Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218, USA

3. Department of Mathematics and Statistics, University of Massachusetts , 710 N Pleasant St, Amherst, MA 01003, USA

4. Department of Informatics, Technical University of Munich , Boltzmannstr. 3, Garching 85748, Germany

5. The Program in Applied and Computational Mathematic, Princeton University , Washington Road, Princeton, NJ 08544, USA

6. Department of Chemical and Biological Engineering, Princeton University , 50–70 Olden St, Princeton, NJ 08544, USA

7. Lewis-Sigler Institute for Integrative Genomics, Princeton University , Princeton, NJ 08540, USA

Abstract

Abstract We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.

Funder

U.S. Department of Energy

Air Force Office of Scientific Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3