Nonlinear manifold learning determines microgel size from Raman spectroscopy

Author:

Koronaki Eleni D.1,Kaven Luise F.2,Faust Johannes M. M.2,Kevrekidis Ioannis G.3,Mitsos Alexander245ORCID

Affiliation:

1. Faculté des Sciences, de la Technologie et de la Communication Université de Luxembourg Esch‐sur‐Alzette Luxembourg

2. Process Systems Engineering (AVT.SVT) RWTH Aachen University Aachen Germany

3. Department of Chemical and Biomolecular Engineering and Department of Applied Mathematics and Statistics, Whiting School of Engineering Johns Hopkins University Baltimore Maryland USA

4. JARA‐CSD Aachen Germany

5. Institute of Energy and Climate Research, Energy Systems Engineering (IEK‐10) Forschungszentrum Jülich GmbH Jülich Germany

Abstract

AbstractPolymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross‐linked polymer) samples in a diameter range of 208–483 nm. The conformal autoencoders substantially outperform state‐of‐the‐art methods and results for the first time in a promising prediction of polymer size from Raman spectra.

Funder

Air Force Office of Scientific Research

Deutsche Forschungsgemeinschaft

Horizon 2020 Framework Programme

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3