Shower water contributes viable nontuberculous mycobacteria to indoor air

Author:

Shen Yun1ORCID,Haig Sarah-Jane1,Prussin Aaron J2,LiPuma John J3,Marr Linsey C2,Raskin Lutgarde1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Michigan , 1351 Beal Avenue , Ann Arbor, MI 48109, USA

2. Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall , Blacksburg, VA 24061, USA

3. Department of Pediatrics, University of Michigan Medical School , 1500 E. Medical Center Dr. , Ann Arbor, MI 48109, USA

Abstract

Abstract Nontuberculous mycobacteria (NTM) are frequently present in municipal drinking water and building plumbing, and some are believed to cause respiratory tract infections through inhalation of NTM-containing aerosols generated during showering. However, the present understanding of NTM transfer from water to air is insufficient to develop NTM risk mitigation strategies. This study aimed to characterize the contribution of shower water to the abundance of viable NTM in indoor air. Shower water and indoor air samples were collected, and 16S rRNA and rpoB genes were sequenced. The sequencing results showed that running the shower impacted the bacterial community structure and NTM species composition in indoor air by transferring certain bacteria from water to air. A mass balance model combined with NTM quantification results revealed that on average 1/132 and 1/254 of NTM cells in water were transferred to air during 1 hour of showering using a rain and massage showerhead, respectively. A large fraction of the bacteria transferred from water to air were membrane-damaged, i.e. they had compromised membranes based on analysis by live/dead staining and flow cytometry. However, the damaged NTM in air were recoverable as shown by growth in a culture medium mimicking the respiratory secretions of people with cystic fibrosis, implying a potential infection risk by NTM introduced to indoor air during shower running. Among the recovered NTM, Mycobacterium mucogenicum was the dominant species as determined by rpoB gene sequencing. Overall, this study lays the groundwork for future pathogen risk management and public health protection in the built environment.

Funder

University of Michigan

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3