Balancing water conservation and health: do water-saving showerheads impact the microbes we breathe in during showering?

Author:

Pitell Sarah,Woo Cheolwoon,Trump Evan,Haig Sarah-Jane

Abstract

Low-flow showerheads offer consumers economic and water-saving benefits, yet their use may inadvertently affect the microbial content of produced water and water-associated aerosols. This study aimed to compare the abundance and microbial composition of bacteria in shower water and associated respirable aerosols produced by various low flow rate (1, 1.5, and 1.8 gpm) showerheads. Our findings indicate that the lowest-flow showerhead produces water with lower total microbial and opportunistic bacterial pathogen densities compared to higher low flow rate counterparts. However, microbiome analysis revealed that 1.8 gpm flow rate showerheads exhibit reduced abundance of Gram-negative organisms and common biofilm-forming organisms, suggesting potentially lower pathogenicity compared to 1 and 1.5 gpm low-flow showerheads. Additionally, the number of respirable aerosols produced by showerheads as well as the partitioning of certain microorganisms from the water to aerosol phases was negatively correlated with flow rate, suggesting that there may be increasing exposure potential to pathogenic bioaerosols when using a 1gpm showerhead compared to a 1.8 gpm showerhead. However, the 1.5 gpm showerhead seemed to balance microbial partitioning, aerosol generation, and water conservation. Moreover, the microbial composition of aerosols produced from shower water was more influenced by the age of the showerhead than the flow rate, highlighting the significance of biofilm formation on the microbial community. Overall, our findings underscore the importance of evaluating the microbial risk associated with low-flow showerheads using multiple metrics in both water and aerosols, and dynamically assessing this over time, to ensure accurate future risk assessment.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3