Estimation of empty body and carcass chemical composition of lactating and growing cattle: comparison of imaging, adipose cellularity, and rib dissection methods

Author:

Xavier Caroline12ORCID,Driesen Charlotte13,Siegenthaler Raphael4,Dohme-Meier Frigga1,Le Cozler Yannick2ORCID,Lerch Sylvain1ORCID

Affiliation:

1. Ruminants Research Group , Agroscope, 1725 Posieux , Switzerland

2. PEGASE INRAE-Institut Agro Rennes-Angers , 16 Le Clos, 35590 Saint Gilles , France

3. Empa, Laboratory for Advanced Analytical Technologies , Überlandstrasse 129, 8600 Dübendorf , Switzerland

4. Research Contracts Animals Group, Agroscope , 1725 Posieux , Switzerland

Abstract

Abstract The aim of present study was to compare in vivo and post mortem methods for estimating the empty body (EB) and carcass chemical compositions of Simmental lactating and growing cattle. Indirect methods were calibrated against the direct post mortem reference determination of chemical compositions of EB and carcass, determined after grinding and analyzing the water, lipid, protein, mineral masses, and energy content. The indirect methods applied to 12 lactating cows and 10 of their offspring were ultrasound (US), half-carcass and 11th rib dual-energy X-ray absorptiometry (DXA) scans, subcutaneous and perirenal adipose cell size (ACS), and dissection of the 11th rib. Additionally, three-dimensional (3D) images were captured for 8 cows. Multiple linear regressions with leave-one-out-cross-validations were tested between predictive variables derived from the methods tested, and the EB and carcass chemical compositions. Partial least square regressions were used to estimate body composition with morphological traits measured on 3D images. Body weight (BW) alone estimated the EB and carcass composition masses with a root mean squared error of prediction (RMSEP) for the EB from 1 kg for minerals to 12.4 kg for lipids, and for carcass from 0.9 kg for minerals to 7.8 kg for water. Subcutaneous adipose tissue thickness measured by US was the most accurate in vivo predictor when associated with BW to estimate chemical composition, with the EB lipid mass RMSEP = 11 kg and R2 = 0.75; carcass water mass RMSEP = 6 kg and R2 = 0.98; and carcass energy content RMSEP = 236 MJ and R2 = 0.91. Post mortem, carcass lipid mass was best estimated by half-carcass DXA scan (RMSEP = 2 kg, R2 = 0.98), 11th rib DXA scan (RMSEP = 3 kg, R2 = 0.96), 11th rib dissection (RMSEP = 4 kg, R2 = 0.92), and perirenal ACS (RMSEP = 6 kg, R2 = 0.79) in this respective order. The results obtained by 11th rib DXA scan were accurate and close to the half-carcass DXA scan with a reduction in scan time. Morphological traits from 3D images delivered promising estimations of the cow EB and carcass chemical component masses with an error less than 13 kg for the EB lipid mass and than 740 MJ for the EB energy. Future research is required to test the 3D imaging method on a larger number of animals to confirm and quantify its interest in estimating body composition in living animals.

Funder

Agrocampus-Ouest

Institut national de recherche pour l’agriculture, l’alimentation et l’environnement

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3