Effects of calcium-magnesium carbonate and calcium-magnesium hydroxide as supplemental sources of magnesium on ruminal microbiome

Author:

Arce-Cordero Jose A12ORCID,Liu Ting3,Ravelo Anay1,Lobo Richard R1,Agustinho Bruna C1,Monteiro Hugo F1,Jeong Kwang C3,Faciola Antonio P1ORCID

Affiliation:

1. Department of Animal Sciences, University of Florida , Gainesville, FL 32611 , USA

2. Escuela de Zootecnia, Universidad de Costa Rica , San Jose, 11501-2060 , Costa Rica

3. Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611 , USA

Abstract

Abstract Our objective was to evaluate the inclusion of calcium-magnesium carbonate [CaMg(CO3)2] and calcium-magnesium hydroxide [CaMg(OH)4] in corn silage-based diets and their impact on ruminal microbiome. Our previous work showed a lower pH and molar proportion of butyrate from diets supplemented with [CaMg(CO3)2] compared to [CaMg(OH)4]; therefore, we hypothesized that ruminal microbiome would be affected by Mg source. Four continuous culture fermenters were arranged in a 4 × 4 Latin square with the following treatments defined by the supplemental source of Mg: 1) Control (100% MgO, plus sodium sesquicarbonate as a buffer); 2) CO3 [100% CaMg(CO3)2]; 3) OH [100% CaMg(OH)4]; and 4) CO3/OH [50% Mg from CaMg(CO3)2, 50% Mg from CaMg(OH)4]. Diet nutrient concentration was held constant across treatments (16% CP, 30% NDF, 1.66 MCal NEl/kg, 0.67% Ca, and 0.25% Mg). We conducted four fermentation periods of 10 d, with the last 3 d for collection of samples of solid and liquid digesta effluents for DNA extraction. Overall, 16 solid and 16 liquid samples were analyzed by amplification of the V4 variable region of bacterial 16S rRNA. Data were analyzed with R and SAS to determine treatment effects on taxa relative abundance of liquid and solid fractions. Correlation of butyrate molar proportion with taxa relative abundance was also analyzed. Treatments did not affect alpha and beta diversities or relative abundance of phylum, class and order in either liquid or solid fractions. At the family level, relative abundance of Lachnospiraceae in solid fraction was lower for CO3 and CO3/OH compared to OH and Control (P < 0.01). For genera, abundance of Butyrivibrio (P = 0.01) and Lachnospiraceae ND3007 (P < 0.01) (both from Lachnospiraceae family) was lower and unclassified Ruminococcaceae (P = 0.03) was greater in CO3 than Control and OH in solid fraction; while abundance of Pseudobutyrivibrio (P = 0.10) and Lachnospiraceae FD2005 (P = 0.09) (both from Lachnospiraceae family) and Ruminobacter (P = 0.09) tended to decrease in CO3 compared to Control in liquid fraction. Butyrate molar proportion was negatively correlated to Ruminococcaceae (r = –0.55) in solid fraction and positively correlated to Pseudobutyrivibrio (r = 0.61) and Lachnospiraceae FD2005 (r = 0.61) in liquid. Our results indicate that source of Mg has an impact on bacterial taxa associated with ruminal butyrate synthesis, which is important for epithelial health and fatty acid synthesis.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3