CORAL: A framework for rigorous self-validated data modeling and integrative, reproducible data analysis

Author:

Novichkov Pavel S1ORCID,Chandonia John-Marc1ORCID,Arkin Adam P12ORCID

Affiliation:

1. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, CA 94720, USA

2. Department of Bioengineering, University of California , Berkeley, CA 94720, USA

Abstract

Abstract Background Many organizations face challenges in managing and analyzing data, especially when relevant datasets arise from multiple sources and methods. Analyzing heterogeneous datasets and additional derived data requires rigorous tracking of their interrelationships and provenance. This task has long been a Grand Challenge of data science and has more recently been formalized in the FAIR principles: that all data objects be Findable, Accessible, Interoperable, and Reusable, both for machines and for people. Adherence to these principles is necessary for proper stewardship of information, for testing regulatory compliance, for measuring the efficiency of processes, and for facilitating reuse of data-analytical frameworks. Findings We present the Contextual Ontology-based Repository Analysis Library (CORAL), a platform that greatly facilitates adherence to all 4 of the FAIR principles, including the especially difficult challenge of making heterogeneous datasets Interoperable and Reusable across all parts of a large, long-lasting organization. To achieve this, CORAL's data model requires that data generators extensively document the context for all data, and our tools maintain that context throughout the entire analysis pipeline. CORAL also features a web interface for data generators to upload and explore data, as well as a Jupyter notebook interface for data analysts, both backed by a common API. Conclusions CORAL enables organizations to build FAIR data types on the fly as they are needed, avoiding the expense of bespoke data modeling. CORAL provides a uniquely powerful platform to enable integrative cross-dataset analyses, generating deeper insights than are possible using traditional analysis tools.

Funder

Lawrence Berkeley National Laboratory

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference24 articles.

1. The FAIR Guiding Principles for scientific data management and stewardship;Wilkinson;Sci Data,2016

2. Relational database: a practical foundation for productivity;Codd;Commun ACM,1982

3. NoSQL databases: a step to database scalability in web environment;Pokorny,2011

4. Best practice data life cycle approaches for the life sciences;Griffin;F1000Research,2018

5. 1,500 scientists lift the lid on reproducibility;Baker;Nat News,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3