Best practice data life cycle approaches for the life sciences

Author:

Griffin Philippa C.,Khadake Jyoti,LeMay Kate S.ORCID,Lewis Suzanna E.,Orchard SandraORCID,Pask Andrew,Pope BernardORCID,Roessner Ute,Russell KeithORCID,Seemann Torsten,Treloar Andrew,Tyagi SonikaORCID,Christiansen Jeffrey H.,Dayalan Saravanan,Gladman Simon,Hangartner Sandra B.,Hayden Helen L.,Ho William W.H.,Keeble-Gagnère Gabriel,Korhonen Pasi K.,Neish Peter,Prestes Priscilla R.,Richardson Mark F.ORCID,Watson-Haigh Nathan S.,Wyres Kelly L.,Young Neil D.,Schneider Maria Victoria

Abstract

Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a ‘life cycle’ view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on ‘omics’ datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices.

Funder

University of Melbourne

Bioplatforms Australia

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference87 articles.

1. Scientific workflows for computational reproducibility in the life sciences: status, challenges and opportunities.;S Cohen-Boulakia;Future Gener Comput Syst.,2017

2. The Tao of open science for ecology.;S Hampton;Ecosphere.,2015

3. Large-scale data sharing in the life sciences: Data standards, incentives, barriers and funding models;P Lord,2005

4. Data reuse and the open data citation advantage.;H Piwowar;PeerJ.,2013

5. The availability of research data declines rapidly with article age.;T Vines;Curr Biol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3