Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture

Author:

Strock Christopher F1ORCID,Rangarajan Harini1,Black Christopher K1,Schäfer Ernst D1,Lynch Jonathan P1ORCID

Affiliation:

1. Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

Abstract Background and Aims Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. Methods We utilize the functional–structural plant model ‘OpenSimRoot’ to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. Key Results Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. Conclusions While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.

Funder

U.S. Department of Energy

Foundation for Food and Agriculture Research

Crops of the Future Collaborative ‘Crops in Silico’ project

U.S. Department of Agriculture

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference114 articles.

1. Mechanics of root growth in granular media;Abdalla;Journal of Agricultural Engineering Research,1969

2. Temporal variation in root penetration ability of wheat genotypes through thin wax layers in contrasting water regimes and in the field;Acuna;Field Crops Research,2012

3. Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize;Ahmed;Journal of Experimental Botany,2018

4. ParaView: an end-user tool for large data visualization;Ahrens,2005

5. The effect of soil compaction on wheat during early tillering;Atwell;New Phytologist,1990

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3