Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa

Author:

Ahmed Shamseddin1ORCID,M. Ishag Hussein,M. Deifalla Adil

Affiliation:

1. King Faisal University

Abstract

Ongoing efforts are currently being made to rehabilitate drought-affected pastures in Sub-Saharan Africa. One approach being explored is the introduction of non-native grass species, such as Megathyrsus maximus (Guinea grass). This study aims to investigate the water use of Guinea grass in semi-arid environments under rainfed conditions. Additionally, it aims to a better understanding of the variability of water use in Guinea grass through the utilization of the Bagging machine learning algorithm. Split-plot field experiments were carried out over two consecutive rainy seasons (2020-2021). The treatments included two in-situ rainwater harvesting practices, RWH (ridging plus terracing and terracing alone), three seeding rates, SR (1.5, 2.5, and 3.5 kg ha-1), and two soil nitrogen fertilization rates, SF (95 kg N ha-1 and 0 kg N ha-1). These treatments were compared to a control plot that involved zero-tillage, no fertilization, and no rainwater harvesting. The collected datasets were analyzed using R, SPSS 15, and spreadsheets. The results showed significant differences in plant indices and soil moisture content among the treatments. However, the treatments had insignificant effects on seasonal actual crop evapotranspiration (ETa), which ranged from 1.93 to 3.29 mm day-1. The interactions between SR and RWH were found to have significant impacts on water use. The Bagging algorithm revealed that the variability in ETa could be attributed to SR (42%), RWH (31%), and SF (26%), respectively. The implementation of rainwater harvesting practices resulted in a significant reduction in water usage, saving 86% of the green water used with a water footprint of 0.25 m3 kg-1, compared to 1.7 m3 kg-1 for no adoption of RWH conditions. The water use of rainfed Guinea grass was also found highly sensitive to dry spells. Further detailed studies using multiple-layer models are recommended to gain a better understanding of the non-linear interactions in semi-arid environments.

Publisher

Turkish Journal of Range and Forage Science, Society of Range and Forage Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3