Under pressure: elucidating soil compaction and its effect on soil functions

Author:

Frene Juan P.,Pandey Bipin K.,Castrillo GabrielORCID

Abstract

Abstract Background Modern agricultural practices have exacerbated soil compaction, largely due to the intensification of operations involving heavier machinery and tillage practices. Soil compaction increases soil bulk density and reduces porosity, limiting water and nutrient diffusion within the soil matrix. Soil compaction also alters bacterial and fungal communities in agroecosystems by favouring, for example, anaerobic prokaryotes and saprotrophic fungi. Under these conditions crop yields are reduced, affecting food security. Scope We review recent advances in understanding the impact of compaction on soil physical and chemical characteristics and plant physiological response to this stress, with special emphasis on the effect of soil compaction on bacterial and fungal communities and their interaction with the plant. Additionally, we discuss recent findings on plant responses to compacted soils that affect the recruitment of root microbiota and how the microbiota could help the plant cope with this stress. We also discuss possible strategies to mitigate the consequences of soil compaction in agricultural settings. Conclusions Research in soil compaction is far from conclusive about the mechanisms that plants use to respond to compaction. It is also not well understood how the microbiota inhabiting the roots participate in the plant response mechanisms to this stress. A better understanding of the mechanisms that drive the selection and establishment of the plant microbial community at the root-soil interface in compacted soils could help find new strategies that, together with existing ones, could improve crop production in compacted soils.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3