FINER: enhancing the prediction of tissue-specific functions of isoforms by refining isoform interaction networks

Author:

Chen Hao1ORCID,Shaw Dipan1ORCID,Bu Dongbo23,Jiang Tao14ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA

2. Key Lab of Intelligent Information Process, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

Abstract Annotating the functions of gene products is a mainstay in biology. A variety of databases have been established to record functional knowledge at the gene level. However, functional annotations at the isoform resolution are in great demand in many biological applications. Although critical information in biological processes such as protein–protein interactions (PPIs) is often used to study gene functions, it does not directly help differentiate the functions of isoforms, as the ‘proteins’ in the existing PPIs generally refer to ‘genes’. On the other hand, the prediction of isoform functions and prediction of isoform–isoform interactions, though inherently intertwined, have so far been treated as independent computational problems in the literature. Here, we present FINER, a unified framework to jointly predict isoform functions and refine PPIs from the gene level to the isoform level, enabling both tasks to benefit from each other. Extensive computational experiments on human tissue-specific data demonstrate that FINER is able to gain at least 5.16% in AUC and 15.1% in AUPRC for functional prediction across multiple tissues by refining noisy PPIs, resulting in significant improvement over the state-of-the-art methods. Some in-depth analyses reveal consistency between FINER’s predictions and the tissue specificity as well as subcellular localization of isoforms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3