The evolution and role of the periplasmic asparaginase Asp3 in yeast

Author:

Coral-Medina Angela12ORCID,Fenton Darren A13,Varela Javier14,Baranov Pavel V3ORCID,Camarasa Carole2,Morrissey John P1ORCID

Affiliation:

1. School of Microbiology, University College Cork , Cork T12 K8AF, Ireland

2. SPO, Université Montpellier, INRAE, Institut Agro , Montpellier 34060, France

3. School of Biochemistry and Cell Biology, University College Cork , Cork T12 XF62, Ireland

4. Metabolic Engineering Department, CarboCode GmbH ,, Konstanz 78467, Germany

Abstract

ABSTRACT The study of nitrogen assimilation in yeast is of interest from genetic, evolutionary, and biotechnological perspectives. Over the course of evolution, yeasts have developed sophisticated control mechanisms to regulate nitrogen metabolism, with domesticated lineages sometimes displaying particular specialisation. The focus of this study was on assimilation of asparagine, which is a significant nutritional source for some alcoholic fermentations. We were particularly interested in ASP3, which encodes a periplasmic asparaginase and that was proposed to have been acquired relatively recently in S. cerevisiae by horizontal gene transfer. We examined 1680 S. cerevisiae genome assemblies to evaluate the distribution and evolutionary trajectory of ASP3. Our findings suggest an alternative hypothesis that ASP3 is an ancient Saccharomyces gene that has generally been lost over the course of evolution but has been retained in certain fermentative environments. As asparagine is the major nitrogen source in apple juice, we explored whether the presence of ASP3 would confer a growth advantage. Interestingly, we found that although ASP3 enhances growth when asparagine is the sole nitrogen source, the same effect is not seen in apple juice. These data indicate that growth in pure culture may not reflect the original selective environment for ASP3+ strains and highlight the role that complex regulation may play in optimising nitrogen assimilation in yeasts.

Funder

European Union

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3