Systematic Profiling of Ale Yeast Protein Dynamics across Fermentation and Repitching

Author:

Garge Riddhiman K12,Geck Renee C1ORCID,Armstrong Joseph O1ORCID,Dunn Barbara1,Boutz Daniel R23,Battenhouse Anna2,Leutert Mario14,Dang Vy2,Jiang Pengyao1ORCID,Kwiatkowski Dusan5,Peiser Thorin5,McElroy Hoyt5,Marcotte Edward M2,Dunham Maitreya J1ORCID

Affiliation:

1. Department of Genome Sciences, University of Washington , Seattle, Washington, 98195 , USA

2. Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas, 78712 , USA

3. Houston Methodist Research Institute , Houston, Texas, 77030 , USA

4. Institute of Molecular Systems Biology , ETH Zürich, Zürich, 8049 , Switzerland

5. Live Oak Brewing Company , Austin, Texas, 78617 , USA

Abstract

Abstract Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is amongst the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout two fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The micromammals;G3: Genes, Genomes, Genetics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3