The Cryptococcus neoformans monocarboxylate transporter Jen4 is responsible for increased 3-bromopyruvate sensitivity

Author:

Niedźwiecka Katarzyna1ORCID,Ribas David2,Casal Margarida2,Ułaszewski Stanisław1

Affiliation:

1. Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51–148 Wroclaw, Poland

2. Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal

Abstract

ABSTRACT In the last decades, 3-bromopyruvate (3BP) has been intensively studied as a promising anticancer and antimicrobial agent. The transport of this drug inside the cell is a critical step for its toxicity in cancer and microorganisms. The Cryptococcus neoformans is the most sensitive species of microorganisms toward 3BP. Its cells exhibit the highest uptake rate of 3BP among all tested fungal strains. In Saccharomyces cerevisiae cells, the Jen1 transporter was found to be responsible for 3BP sensitivity. The deletion of Jen1 resulted in the abolishment of 3BP mediated transport. We functionally characterized the Jen4 protein, a Jen1 homologue of C. neoformans, and its role in the phenotypic 3BP sensitivity. The deletion of the CNAG_04704 gene, which encodes Jen4, was found to impair the mediated transport of 3BP and decrease 3BP sensitivity. Further heterologous expression of Jen4 in the S. cerevisiae jen1Δ ady2Δ strain restored the mediated transport of 3BP. The application of a green fluorescent protein fusion tag with the CNAG_04704, revealed the Jen4 labeled on the plasma membrane. The identification of 3BP transporters in pathogen cells is of great importance for understanding the mechanisms of 3BP action and to anticipate the application of this compound as an antimicrobial drug.

Funder

Polish National Science Center

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3