Thermomechanical and enzyme-facilitated processing of soybean meal enhanced in vitro kinetics of protein digestion and protein and amino acid digestibility in weaned pigs

Author:

Ton Nu Mai Anh123ORCID,Lupatsch Ingrid2,Zannatta Joaquin S3,Schulze Hagen2,Zijlstra Ruurd T3

Affiliation:

1. Agilia a/s, Videbaek, Denmark

2. AB Agri Ltd., Peterborough, UK

3. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada

Abstract

Abstract Soybean meal (SBM) contains anti-nutritional factors (ANF) that may limit kinetics and total extent of protein digestion in pigs. This study evaluated the effects of thermomechanical and enzyme-facilitated (TE) processing on in vitro kinetics of crude protein (CP) digestion and CP and amino acid (AA) digestibility in weaned pigs. Each batch of SBM (48% CP) was divided into two parts: non-processed SBM as control vs. thermomechanical and enzyme-facilitated processed soybean meal (TES) as the experimental group. For digestion kinetics, samples (three batches of non-processed SBM vs. TES) were incubated in triplicate sequentially with pepsin at pH 3.5 for 1.5 h (stomach phase) and subsequently with pancreatin and bile extract at pH 6.8 for 0, 0.5, 1, 2, 4, or 6 h (small intestine phase). Protein was classified into CPfast, CPslow, and CPresistant corresponding to CP digested within the first 0.5 h, from 0.5 to 4 h, and after 4 h plus undigested CP, respectively. Eight weaned barrows (Large White × Duroc, 9.43 ± 0.40 kg) were surgically fitted with a T-cannula at the terminal ileum. Pigs were randomly assigned to a Youden square with three diets over four periods. The three diets were an N-free diet and two diets using 40% SBM or TES as the sole source of AA with Cr2O3 as an indigestible marker. Each period included sequentially a 5-d adaptation, 2-d collection of feces, and 2-d collection of ileal digesta. The TE processing reduced ANF content in TES by 91% for lectin, 22% for trypsin inhibitor activity, 75% for β-conglycinin, and 62% for glycinin compared with SBM. In vitro, TE processing increased (P < 0.05) digested CP by 5.6% and enhanced the kinetics of CP digestion by tending to increase (P = 0.056) CPfast by 25% and reducing (P < 0.05) CPslow and CPresistant by 48% and 11%, respectively. In pigs, TE processing increased (P < 0.05) apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP in TES by 2.3% and 2.1%, respectively. The TE processing increased (P < 0.05) AID and SID of all AA up to 3.3%, except for AID of Pro and SID of Pro, Gly, and Cys. The TE processing did not change reactive Lys or Lys:CP but increased (P < 0.05) SID of Lys and reactive Lys by 3%. Combined, the greater in vitro digestion kinetics matched the greater in vivo AID and SID of CP in TES and lower ANF compared with SBM. Thus, TE processing created a protein source that is digested faster and to a greater extent than SBM, thereby lowering the chance of protein fermentation.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference54 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3