Towards a New Qualitative Screening Assay for Synthetic Cannabinoids Using Metabolomics and Machine Learning

Author:

Streun Gabriel L1,Steuer Andrea E1ORCID,Poetzsch Sandra N1,Ebert Lars C2,Dobay Akos3,Kraemer Thomas1ORCID

Affiliation:

1. Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich , Zurich, Switzerland

2. Department of Forensic Imaging/Virtopsy, Zurich Institute of Forensic Medicine, University of Zurich , Zurich, Switzerland

3. Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich , Zurich, Switzerland

Abstract

Abstract Background Synthetic cannabinoids (SCs) are steadily emerging on the drug market. To remain competitive in clinical or forensic toxicology, new screening strategies including high-resolution mass spectrometry (HRMS) are required. Machine learning algorithms can detect and learn chemical signatures in complex datasets and use them as a proxy to predict new samples. We propose a new screening tool based on a SC-specific change of the metabolome and a machine learning algorithm. Methods Authentic human urine samples (n = 474), positive or negative for SCs, were used. These samples were measured with an untargeted metabolomics liquid chromatography (LC)–quadrupole time-of-flight-HRMS method. Progenesis QI software was used to preprocess the raw data. Following feature engineering, a random forest (RF) model was optimized in R using a 10-fold cross-validation method and a training set (n = 369). The performance of the model was assessed with a test (n = 50) and a verification (n = 55) set. Results During RF optimization, 49 features, 200 trees, and 7 variables at each branching node were determined as most predictive. The optimized model accuracy, clinical sensitivity, clinical specificity, positive predictive value, and negative predictive value were 88.1%, 83.0%, 92.7%, 91.3%, and 85.6%, respectively. The test set was predicted with an accuracy of 88.0%, and the verification set provided evidence that the model was able to detect cannabinoid-specific changes in the metabolome. Conclusions An RF approach combined with metabolomics enables a novel screening strategy for responding effectively to the challenge of new SCs. Biomarkers identified by this approach may also be integrated in routine screening methods.

Funder

Emma Louise Kessler Foundation

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3