Development of a Machine Learning Algorithm for Drug Screening Analysis on High-Resolution UPLC-MSE/QTOF Mass Spectrometry

Author:

Hao Ying1,Lynch Kara2ORCID,Fan Pengcheng3,Jurtschenko Christopher4,Cid Maria5,Zhao Zhen15ORCID,Yang He S15

Affiliation:

1. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine , New York, NY , USA

2. Department of Pathology and Laboratory Medicine, University of California, San Francisco , San Francisco, CA , USA

3. Proteomics and Metabolomics Core Laboratory, Weill Cornell Medicine , New York, NY

4. Waters Corporation , Milford, MA , USA

5. Toxicology and Therapeutic Drug Monitoring Laboratory, New York-Presbyterian Hospital, Weill Cornell Medicine Center , New York, NY , USA

Abstract

Abstract Background Ultra-performance liquid chromatography (UPLC)-MSE/quadrupole time-of-flight (QTOF) high-resolution mass spectrometry employs untargeted, data-independent acquisition in a dual mode that simultaneously collects precursor ions and product ions at low and ramped collision energies, respectively. However, algorithmic analysis of large-scale multivariate data of comprehensive drug screening as well as the positivity criteria of drug identification have not been systematically investigated. It is also unclear whether ion ratio (IR), the intensity ratio of a defined product ion divided by the precursor ion, is a stable parameter that can be incorporated into the MSE/QTOF data analysis algorithm. Methods IR of 91 drugs were experimentally determined and variation of IR was investigated across 5 concentrations measured on 3 different days. A data-driven machine learning approach was employed to develop multivariate linear regression (MLR) models incorporating mass error, retention time, number of detected fragment ions and IR, accuracy of isotope abundance, and peak response using drug-supplemented urine samples. Performance of the models was evaluated in an independent data set of unknown clinical urine samples in comparison with the results of manual analysis. Results IR of most compounds acquired by MSE/QTOF were low and concentration-dependent (i.e., IR increased at higher concentrations). We developed an MLR model with composite score outputs incorporating 7 parameters to predict positive drug identification. The model achieved a mean accuracy of 89.38% in the validation set and 87.92% agreement in the test set. Conclusions The MLR model incorporating all contributing parameters can serve as a decision-support tool to facilitate objective drug identification using UPLC-MSE/QTOF.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3