Machine learning-based clinical decision support using laboratory data

Author:

Çubukçu Hikmet Can12ORCID,Topcu Deniz İlhan3ORCID,Yenice Sedef4ORCID

Affiliation:

1. General Directorate of Health Services, Rare Diseases Department , Turkish Ministry of Health , Ankara , Türkiye

2. Hacettepe University Institute of Informatics , Ankara , Türkiye

3. Health Sciences University İzmir Tepecik Education and Research Hospital, Medical Biochemistry , İzmir , Türkiye

4. Florence Nightingale Hospital , Istanbul , Türkiye

Abstract

Abstract Artificial intelligence (AI) and machine learning (ML) are becoming vital in laboratory medicine and the broader context of healthcare. In this review article, we summarized the development of ML models and how they contribute to clinical laboratory workflow and improve patient outcomes. The process of ML model development involves data collection, data cleansing, feature engineering, model development, and optimization. These models, once finalized, are subjected to thorough performance assessments and validations. Recently, due to the complexity inherent in model development, automated ML tools were also introduced to streamline the process, enabling non-experts to create models. Clinical Decision Support Systems (CDSS) use ML techniques on large datasets to aid healthcare professionals in test result interpretation. They are revolutionizing laboratory medicine, enabling labs to work more efficiently with less human supervision across pre-analytical, analytical, and post-analytical phases. Despite contributions of the ML tools at all analytical phases, their integration presents challenges like potential model uncertainties, black-box algorithms, and deskilling of professionals. Additionally, acquiring diverse datasets is hard, and models’ complexity can limit clinical use. In conclusion, ML-based CDSS in healthcare can greatly enhance clinical decision-making. However, successful adoption demands collaboration among professionals and stakeholders, utilizing hybrid intelligence, external validation, and performance assessments.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3