Stochastic mathematical models for the spread of COVID-19: a novel epidemiological approach

Author:

Mourad Ayman1,Mroue Fatima2,Taha Zahraa3

Affiliation:

1. Department of Mathematics, Faculty of Sciences (I), Lebanese University, Hadat 1500, Lebanon, and Mathematics Laboratory, Doctoral School of Sciences and Technology, Lebanese University, Hadat 1500, Lebanon

2. Department of Mathematics, Faculty of Sciences (I), Lebanese University, Hadat 1500, Lebanon

3. Mathematics Laboratory, Doctoral School of Sciences and Technology, Lebanese University, Hadat 1500, Lebanon

Abstract

Abstract In this paper, three stochastic mathematical models are developed for the spread of the coronavirus disease (COVID-19). These models take into account the known special characteristics of this disease such as the existence of infectious undetected cases and the different social and infectiousness conditions of infected people. In particular, they include a novel approach that considers the social structure, the fraction of detected cases over the real total infected cases, the influx of undetected infected people from outside the borders, as well as contact-tracing and quarantine period for travellers. Two of these models are discrete time–discrete state space models (one is simplified and the other is complete) while the third one is a continuous time–continuous state space stochastic integro-differential model obtained by a formal passing to the limit from the proposed simplified discrete model. From a numerical point of view, the particular case of Lebanon has been studied and its reported data have been used to estimate the complete discrete model parameters, which can be of interest in estimating the spread of COVID-19 in other countries. The obtained simulation results have shown a good agreement with the reported data. Moreover, a parameters’ analysis is presented in order to better understand the role of some of the parameters. This may help policy makers in deciding on different social distancing measures.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Pharmacology,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3