Distinct types of selection and genetic architecture shape molecular variation during the domestication of vegetable crops

Author:

Chen Hung-Wei1ORCID,Chien Chih-Cheng1ORCID,Lee Cheng-Ruei12ORCID

Affiliation:

1. Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan

2. Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan

Abstract

Abstract Humans select vegetable crops with desirable traits via a complex evolutionary process called domestication, generating a variety of cultivars worldwide. With advances in sequencing technologies, genomic scans for “signatures of selection” are widely used to identify target loci of selection. In the early phases of domestication, humans tended to favor similar sets of phenotypes in diverse crops, resulting in “domestication syndrome” and parallel evolution in multiple species. Subsequently, adaptation to distinct environments or different consumer preferences has diversified crop cultivars. Here, we review molecular and population genetic studies on genes affecting trait evolution during this complex process. We emphasize that, depending on interactions among different types of selection (directional selection within or divergent selection between groups), the genetic architecture of the target trait (Mendelian or polygenic), and the origin of the causal variant (new mutation or standing variation), the resulting molecular patterns of variation can be highly diverse. Situations in which the typical hard selective sweep model could be applied may be limited. Therefore, it is crucial to obtain a thorough understanding of the target species’ historical, environmental, and ecological contexts.

Funder

Ministry of Science and Technology

National Science and Technology Council

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3