iRegNet: an integrative Regulatory Network analysis tool for Arabidopsis thaliana

Author:

Shim Sangrea12ORCID,Park Chung-Mo123ORCID,Seo Pil Joon123ORCID

Affiliation:

1. Department of Chemistry, Seoul National University, Seoul 08826, Korea

2. Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea

3. Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea

Abstract

Abstract Gene expression is delicately controlled via multilayered genetic and/or epigenetic regulatory mechanisms. Rapid development of the high-throughput sequencing (HTS) technology and its derivative methods including chromatin immunoprecipitation sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq) have generated a large volume of data on DNA–protein interactions (DPIs) and histone modifications on a genome-wide scale. However, the ability to comprehensively retrieve empirically validated upstream regulatory networks of genes of interest (GOIs) and genomic regions of interest (ROIs) remains limited. Here, we present integrative Regulatory Network (iRegNet), a web application that analyzes the upstream regulatory network for user-queried GOIs or ROIs in the Arabidopsis (Arabidopsis thaliana) genome. iRegNet covers the largest empirically proven DNA-binding profiles of Arabidopsis transcription factors (TFs) and non-TF proteins, and histone modifications obtained from all currently available Arabidopsis ChIP-seq and DAP-seq data. iRegNet not only catalogs upstream regulomes and epigenetic chromatin states for single-query gene/genomic region but also suggests significantly overrepresented upstream genetic regulators and epigenetic chromatin states of user-submitted multiple query genes/genomic regions. Furthermore, gene-to-gene coexpression index and protein–protein interaction information were also integrated into iRegNet for a more reliable identification of upstream regulators and realistic regulatory networks. Thus, iRegNet will help discover upstream regulators as well as molecular regulatory networks of GOI(s) and/or ROI(s), and is freely available at http://chromatindynamics.snu.ac.kr:8082/iRegNet_main.

Funder

National Research Foundation of Korea

Creative-Pioneering Researchers Program

Seoul National University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3