MYB4 is the best candidate transcription factor involved in pinosylvin stilbene biosynthesis in Pinus strobus L. cells by fungal elicitor treatment

Author:

Kim Yi Rae,Moon Young Bum,Choi Han Bin,Han Jung Yeon,Choi Han Suk,Shim Sangrea,Choi Yong EuiORCID

Abstract

Abstract Key message Dihydropinosylvin monomethyl ether (DPME) and pinosylvin monomethyl ether (PME) are pinosylvin derivatives that show high nematicidal activity against pine wood nematodes (PWNs). Here, we found that fungal elicitor treatment boosted the production of DPME and PME in cultured Pinus strobus L. cells and investigated the transcription factors (TFs) regulating the genes in the pinosylvin stilbenoid biosynthesis pathway. Context The discovery of TFs involved in the synthesis of DPME and PME provides an important clue to understanding the pinosylvin stilbenoid synthesis in pine plants. Aims We investigated the best fungal elicitor for the production of DPME and PME and the transcriptional activities of genes involved in PME and DPME biosynthesis in P. strobus L. cells after fungal elicitor treatment. Methods The content of DPME and PME in P. strobus cells was examined after treatment with fungal elicitors prepared from seven different species of fungi. Moreover, the role of fungal elicitors in the transcriptional activity of genes involved in DPME and PME biosynthesis was investigated by transcriptome analysis using RNA sequencing. Results Penicillium chrysogenum Thorn was the most efficient fungal elicitor for the production of DPME and PME in P. strobus cells among the other fungal species. The accumulation of DPME and PME in P. strobus cells after P. chrysogenum elicitor treatment increased 12.7-fold and 23.7-fold, respectively, compared to the control. Transcriptome analysis revealed that fungal elicitor treatment resulted in enhanced transcription of the PAL, 4CL, STS, PMT, and ACC genes, which are involved in PME and DPME biosynthesis. Some transcription factors belonging to the bHLH, MYB, WRKY, and ERF families showed a high transcription rate after fungal elicitor treatment. Conclusions We found that the fungal elicitor is a strong inducer of the accumulation of pinosylvin derivatives in the cells of P. strobus. We selected one unigene (c133966_g3_i1 in the MYB family) as the best candidate TF that regulates the DPME and PME biosynthesis in P. strobus by transcriptome analysis.

Funder

Kangwon National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3