Genome-wide profiling of rice Double-stranded RNA-Binding Protein 1–associated RNAs by targeted RNA editing

Author:

Yin Shuai1234,Chen Yuedan12,Chen Yache12,Xiong Lizhong1,Xie Kabin1234ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University , Wuhan 430070 , China

2. Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University , Wuhan 430070 , China

3. Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University , Wuhan 430070 , China

4. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences , Shenzhen 518120 , China

Abstract

Abstract RNA-binding proteins (RBPs) play essential roles in regulating gene expression. However, the RNA ligands of RBPs are poorly understood in plants, not least due to the lack of efficient tools for genome-wide identification of RBP-bound RNAs. An RBP-fused adenosine deaminase acting on RNA (ADAR) can edit RBP-bound RNAs, which allows efficient identification of RNA ligands of RBPs in vivo. Here, we report the RNA editing activities of the ADAR deaminase domain (ADARdd) in plants. Protoplast experiments indicated that RBP-ADARdd fusions efficiently edited adenosines within 41 nucleotides (nt) of their binding sites. We then engineered ADARdd to profile the RNA ligands of rice (Oryza sativa) Double-stranded RNA-Binding Protein 1 (OsDRB1). Overexpressing the OsDRB1-ADARdd fusion protein in rice introduced thousands of A-to-G and T-to-C RNA‒DNA variants (RDVs). We developed a stringent bioinformatic approach to identify A-to-I RNA edits from RDVs, which removed 99.7% to 100% of background single-nucleotide variants in RNA-seq data. This pipeline identified a total of 1,798 high-confidence RNA editing (HiCE) sites, which marked 799 transcripts as OsDRB1-binding RNAs, from the leaf and root samples of OsDRB1-ADARdd–overexpressing plants. These HiCE sites were predominantly located in repetitive elements, 3′-UTRs, and introns. Small RNA sequencing also identified 191 A-to-I RNA edits in miRNAs and other sRNAs, confirming that OsDRB1 is involved in sRNA biogenesis or function. Our study presents a valuable tool for genome-wide profiling of RNA ligands of RBPs in plants and provides a global view of OsDRB1-binding RNAs.

Funder

National Natural Science Foundation of China

Collaborative Fund of Huazhong Agricultural University and Agricultural Genomics Institute

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3