Transcription factor DgMYB recruits H3K4me3 methylase to DgPEROXIDASE to enhance chrysanthemum cold tolerance

Author:

Luo Yunchen1,Wang Yongyan1ORCID,Li Xin1ORCID,Yang Xiaohan1,Bai Huiru1,Liao Xiaoqin1ORCID,Luo Xuanling1ORCID,Zhang Fan1ORCID,Zhang Lei1,Liu Qinglin1ORCID

Affiliation:

1. Department of Ornamental Horticulture, Sichuan Agricultural University , Chengdu, Sichuan 611130 , People's Republic of China

Abstract

Abstract Cold affects the growth and development of plants. MYB transcription factors and histone H3K4me3 transferase ARABIDOPSIS TRITHORAXs (ATXs) play important regulatory functions in the process of plant resistance to low-temperature stress. In this study, DgMYB expression was responsive to low temperature, and overexpression of DgMYB led to increased tolerance, whereas the dgmyb mutant resulted in decreased tolerance of Chrysanthemum morifolium (Dendranthema grandiflorum var. Jinba) to cold stresses. Interestingly, we found that only peroxidase (POD) activity differed substantially between wild type (WT), overexpression lines, and the mutant line. A DgATX H3K4me3 methylase that interacts with DgMYB was isolated by further experiments. DgATX expression was also responsive to low temperature. Overexpression of DgATX led to increased tolerance, whereas the dgatx mutant resulted in decreased tolerance of chrysanthemum to cold stresses. Moreover, the dgmyb, dgatx, and dgmyb dgatx double mutants all led to reduced H3K4me3 levels at DgPOD, thus reducing DgPOD expression. Together, our results show that DgMYB interacts with DgATX, allowing DgATX to specifically target DgPOD, altering H3K4me3 levels, increasing DgPOD expression, and thereby reducing the accumulation of reactive oxygen species (ROS) in chrysanthemum.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Sichuan Agricultural University Student Innovation Training Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3