Adaptive selection of the optimal strategy to improve precision and power in randomized trials

Author:

Balzer Laura B1ORCID,Cai Erica2,Godoy Garraza Lucas3,Amaranath Pracheta2

Affiliation:

1. Division of Biostatistics, University of California Berkeley , Berkeley, CA 94720 , United States

2. Manning College of Information and Computer Sciences, University of Massachusetts Amherst , Amherst, MA 01003 , United States

3. Department of Biostatistics, University of Massachusetts Amherst , Amherst, MA 01003 , United States

Abstract

ABSTRACT Benkeser et al. demonstrate how adjustment for baseline covariates in randomized trials can meaningfully improve precision for a variety of outcome types. Their findings build on a long history, starting in 1932 with R.A. Fisher and including more recent endorsements by the U.S. Food and Drug Administration and the European Medicines Agency. Here, we address an important practical consideration: how to select the adjustment approach—which variables and in which form—to maximize precision, while maintaining Type-I error control. Balzer et al. previously proposed Adaptive Pre-specification within TMLE to flexibly and automatically select, from a prespecified set, the approach that maximizes empirical efficiency in small trials (N < 40). To avoid overfitting with few randomized units, selection was previously limited to working generalized linear models, adjusting for a single covariate. Now, we tailor Adaptive Pre-specification to trials with many randomized units. Using V-fold cross-validation and the estimated influence curve-squared as the loss function, we select from an expanded set of candidates, including modern machine learning methods adjusting for multiple covariates. As assessed in simulations exploring a variety of data-generating processes, our approach maintains Type-I error control (under the null) and offers substantial gains in precision—equivalent to 20%-43% reductions in sample size for the same statistical power. When applied to real data from ACTG Study 175, we also see meaningful efficiency improvements overall and within subgroups.

Funder

National Institutes of Health

DARPA

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3