Affiliation:
1. Genentech Inc. South San Francisco California USA
2. School of Public Health, Biostatistics University of California Berkeley Berkeley California USA
3. Institute for Global Health Sciences University of California San Francisco San Francisco California USA
4. Center for Clinical Research Kenya Medical Research Institute Nairobi Kenya
5. Centre of Excellence for Maternal, Newborn and Child Health Makerere University College of Health Sciences Kampala Uganda
Abstract
Across research disciplines, cluster randomized trials (CRTs) are commonly implemented to evaluate interventions delivered to groups of participants, such as communities and clinics. Despite advances in the design and analysis of CRTs, several challenges remain. First, there are many possible ways to specify the causal effect of interest (eg, at the individual‐level or at the cluster‐level). Second, the theoretical and practical performance of common methods for CRT analysis remain poorly understood. Here, we present a general framework to formally define an array of causal effects in terms of summary measures of counterfactual outcomes. Next, we provide a comprehensive overview of CRT estimators, including the t‐test, generalized estimating equations (GEE), augmented‐GEE, and targeted maximum likelihood estimation (TMLE). Using finite sample simulations, we illustrate the practical performance of these estimators for different causal effects and when, as commonly occurs, there are limited numbers of clusters of different sizes. Finally, our application to data from the Preterm Birth Initiative (PTBi) study demonstrates the real‐world impact of varying cluster sizes and targeting effects at the cluster‐level or at the individual‐level. Specifically, the relative effect of the PTBi intervention was 0.81 at the cluster‐level, corresponding to a 19% reduction in outcome incidence, and was 0.66 at the individual‐level, corresponding to a 34% reduction in outcome risk. Given its flexibility to estimate a variety of user‐specified effects and ability to adaptively adjust for covariates for precision gains while maintaining Type‐I error control, we conclude TMLE is a promising tool for CRT analysis.
Funder
Bill and Melinda Gates Foundation
National Institutes of Health
Subject
Statistics and Probability,Epidemiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献