On a Discretization of Confocal Quadrics. A Geometric Approach to General Parametrizations

Author:

Bobenko Alexander I1,Schief Wolfgang K2,Suris Yuri B1,Techter Jan1

Affiliation:

1. Institut für Mathematik, TU Berlin, Berlin, Germany

2. School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW, Australia

Abstract

Abstract We propose a discretization of classical confocal coordinates. It is based on a novel characterization thereof as factorizable orthogonal coordinate systems. Our geometric discretization leads to factorizable discrete nets with a novel discrete analog of the orthogonality property. A discrete confocal coordinate system may be constructed geometrically via polarity with respect to a sequence of classical confocal quadrics. Various sequences correspond to various discrete parametrizations. The coordinate functions of discrete confocal quadrics are computed explicitly. The theory is illustrated with a variety of examples in two and three dimensions. These include confocal coordinate systems parametrized in terms of Jacobi elliptic functions. Connections with incircular nets and a generalized Euler–Poisson–Darboux system are established.

Funder

Deutsche Forschungsgemeinschaft [Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”]

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Discrete analogs of the Darboux-Egorov metrics;Akhmetshin;Proc. Steklov Inst. Math.,1999

2. “Incircular nets and confocal conics.”;Akopyan;Trans. Amer. Math. Soc.,2018

3. Mathematical Methods of Classical Mechanics, 2nd ed;Arnold,1989

4. Discrete Conformal Maps and Surfaces;Bobenko,1999

5. “On a discretization of confocal quadrics. I. An integrable systems approach approach;Bobenko;J. Integrable Syst.,2016

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete Isothermic Nets Based on Checkerboard Patterns;Discrete & Computational Geometry;2023-09-14

2. Discrete orthogonal structures;Computers & Graphics;2023-08

3. On the motion of billiards in ellipses;European Journal of Mathematics;2022-01-24

4. The geometry of billiards in ellipses and their poncelet grids;Journal of Geometry;2021-10-18

5. On Discrete Conjugate Semi-Geodesic Nets;International Mathematics Research Notices;2021-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3