On Discrete Conjugate Semi-Geodesic Nets

Author:

Hoffmann Tim1,Schief Wolfgang K2,Steinmeier Jannik1

Affiliation:

1. Lehrstuhl für Geometrie und Visualisierung, Technische Universität München, Boltzmannstrasse 3, Garching bei München 85748, Germany

2. School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Abstract We introduce two canonical discretizations of nets on generic surfaces, which consist of an one-parameter family of geodesics and its associated family of conjugate lines. The two types of “discrete conjugate semi-geodesic nets” constitute discrete focal nets of circular nets, which mimics the classical connection between surfaces parametrized in terms of curvature coordinates and their focal surfaces on which one corresponding family of coordinate lines are geodesics. The discrete surfaces constructed in this manner are termed circular-geodesic and conical-geodesic nets, respectively, and may be characterized by compact angle conditions. Geometrically, circular-geodesic nets are constructed via normal lines of circular nets, while conical-geodesic nets inherit their name from their intimately related conical nets, which also discretize curvature line parametrized surfaces. We establish a variety of properties of these discrete nets, including their algebraic and geometric 3D consistency, with the latter playing an important role in (integrable) discrete differential geometry.

Funder

Deutsche Forschungsgemeinschaft

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference31 articles.

1. On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs;Akopyan;arXiv: Differential Geometry,2019

2. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation;Bobenko;J. Differential Geom.,1996

3. Discrete isothermic surfaces;Bobenko;Journal für die reine und angewandte Mathematik 1996.,1996

4. Discrete differential geometry;Bobenko;Integrable structure,2008

5. Discrete conformal maps;Bobenko;Symmetries and integrability of difference equations,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3