On the stability of waves in classically neutral flows

Author:

Huber Colin1,Hoitt Meaghan1,Barlow Nathaniel S1,Hill Nicole2,Keithley Kimberlee2,Weinstein Steven J21

Affiliation:

1. School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

2. Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

Abstract

Abstract This paper reports a breakdown in linear stability theory under conditions of neutral stability that is deduced by an examination of exponential modes of the form $h\approx{{e}^{i(kx-\omega t)}}$, where $h$ is a response to a disturbance, $k$ is a real wavenumber and $\omega (k)$ is a wavelength-dependent complex frequency. In a previous paper, King et al. (2016, Stability of algebraically unstable dispersive flows. Phys. Rev. Fluids, 1, 073604) demonstrates that when Im$[\omega (k)]=0$ for all $k$, it is possible for a system response to grow or damp algebraically as $h\approx{{t}^{s}}$ where $s$ is a fractional power. The growth is deduced through an asymptotic analysis of the Fourier integral that inherently invokes the superposition of an infinite number of modes. In this paper, the more typical case associated with the transition from stability to instability is examined in which Im$[\omega (k)]=0$ for a single mode (i.e. for one value of $k$) at neutral stability. Two partial differential equation systems are examined, one that has been constructed to elucidate key features of the stability threshold, and a second that models the well-studied problem of rectilinear Newtonian flow down an inclined plane. In both cases, algebraic growth/decay is deduced at the neutral stability boundary, and the propagation features of the responses are examined.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3