Transience to instability in a liquid sheet

Author:

BARLOW N. S.,HELENBROOK B. T.,LIN S. P.

Abstract

Series solutions are found which describe the evolution to absolute and convective instability in an inviscid liquid sheet flowing in a quiescent ambient gas and subject to a localized perturbation. These solutions are used to validate asymptotic stability predictions for sinuous and varicose disturbances. We show how recent disagreements in growth predictions stem from assumptions made when arriving at the Fourier integral response. Certain initial conditions eliminate or reduce the order of singularities in the Fourier integral. If a Gaussian perturbation is applied to both the position and velocity of a sheet when the Weber number is less than one, we observe absolutely unstable sinuous waves which grow liket1/3. If only the position is perturbed, we find that the sheet is stable and decays liket−2/3at the origin. Furthermore, if both the position and velocity of a sheet are perturbed in theabsenceof ambient gas, we observe a new phenomenon in which sinuous waves neither grow nor decay and varicose waves grow liket1/2with a convective instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3