On the response of neutrally stable flows to oscillatory forcing with application to liquid sheets

Author:

Huber Colin M.1ORCID,Barlow Nathaniel S.1ORCID,Weinstein Steven J.12ORCID

Affiliation:

1. School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA

2. Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA

Abstract

Industrial coating processes create thin liquid films with tight thickness tolerances, and thus, models that predict the response to inevitable disturbances are essential. The mathematical modeling complexities are reduced through linearization as even small thickness variations in films can render a product unsaleable. The signaling problem, considered in this paper, is perhaps the simplest model that incorporates the effects of repetitive (oscillatory) disturbances that are initiated, for example, by room vibrations and pump drives. In prior work, Gordillo and Pérez [“Transient effects in the signaling problem,” Phys. Fluids 14, 4329 (2002)] examined the structure of the signaling response for linear operators that admit exponentially growing or damped solutions; that is, the medium is classified as unstable or stable via classical stability analysis. The signaling problem admits two portions of the solution, the transient behavior due to the start-up of the disturbance and the long-time behavior that is continually forced; the superposition reveals how the forced solution evolves through the passage of a transient. In this paper, we examine signaling for the linear operator examined by King et al. [“Stability of algebraically unstable dispersive flows,” Phys. Rev. Fluids 1, 073604 (2016)] that governs varicose waves in a thin liquid sheet and that can admit solutions having algebraic growth although the underlying medium is classified as being neutrally stable. Long-time asymptotic methods are used to extract critical velocities that partition the response into distinct regions having markedly different location-dependent responses, and the amplitudes of oscillatory responses in these regions are determined. Together, these characterize the magnitude and breadth of the solution response. Results indicate that the signaling response in neutrally stable flows (that admit algebraic growth) is significantly different from that in exponentially unstable systems.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3