StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit flies

Author:

Wu Hao12,Zhang Pengyu1,Ai Zhaoheng1,Wei Leyi2,Zhang Hongming1,Yang Fan34,Cui Lizhen2

Affiliation:

1. College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China

2. School of Software, Shandong University, Jinan, 250101, Shandong, China

3. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China

4. Institute for Medical Dataology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China

Abstract

Abstract Chromosome is composed of many distinct chromatin domains, referred to variably as topological domains or topologically associating domains (TADs). The domains are stable across different cell types and highly conserved across species, thus these chromatin domains have been considered as the basic units of chromosome folding and regarded as an important secondary structure in chromosome organization. However, the identification of TAD boundaries is still a great challenge due to the high cost and low resolution of Hi-C data or experiments. In this study, we propose a novel ensemble learning framework, termed as StackTADB, for predicting the boundaries of TADs. StackTADB integrates four base classifiers including Random Forest, Logistic Regression, K-NearestNeighbor and Support Vector Machine. From the analysis of a series of examinations on the data set in the previous study, it is concluded that StackTADB has optimal performance in six metrics, AUC, Accuracy, MCC, Precision, Recall and F1 score, and it is superior to the existing methods. In addition, the comparison of the performance of multiple features shows that Kmers-based features play an essential role in predicting TADs boundaries of fruit flies, and we also apply the SHapley Additive exPlanations (SHAP) framework to interpret the predictions of StackTADB to identify the reason why Kmers-based features are vital. The experimental results show that the subsequences matching the BEAF-32 motif play a crucial role in predicting the boundaries of TADs. The source code is freely available at https://github.com/HaoWuLab-Bioinformatics/StackTADB and the webserver of StackTADB is freely available at http://hwtad.sdu.edu.cn:8002/StackTADB.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3