Modelling P waves in seismic noise correlations: advancing fault monitoring using train traffic sources

Author:

Sager Korbinian1ORCID,Tsai Victor C1ORCID,Sheng Yixiao2ORCID,Brenguier Florent2ORCID,Boué Pierre2ORCID,Mordret Aurélien2ORCID,Igel Heiner3ORCID

Affiliation:

1. Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA

2. Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, 38400 Saint-Martin-d'Hères, France

3. Department of Earth and Environmental Sciences, Ludwig-Maximilians-University, 80333 München, Germany

Abstract

SUMMARY The theory of Green’s function retrieval essentially requires homogeneously distributed noise sources. Even though these conditions are not fulfilled in nature, low-frequency (<1 Hz) surface waves generated by ocean–crust interactions have been used successfully to image the crust with unprecedented spatial resolution. In contrast to low-frequency surface waves, high-frequency (>1 Hz) body waves have a sharper, more localized sensitivity to velocity contrasts and temporal changes at depth. In general, their retrieval using seismic interferometry is challenging, and recent studies focus on powerful, localized noise sources. They have proven to be a promising alternative but break the assumptions of Green’s function retrieval. In this study, we present an approach to model correlations between P waves for these scenarios and analyse their sensitivity to 3-D Earth structure. We perform a series of numerical experiments to advance our understanding of these signals and prepare for an application to fault monitoring. In the considered cases, the character of the signals strongly diverges from Green’s function retrieval, and the sensitivity to structure has significant contributions in the source direction. An accurate description of the underlying physics allows us to reproduce observations made in the context of monitoring the San Jacinto Fault in California using train-generated seismic waves. This approach provides new perspectives for detecting and localizing temporal velocity changes previously unnoticed by commonly exploited surface-wave reconstructions.

Funder

Swiss National Science Foundation

European Union

European Research Council

French National Research Agency

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3