In Situ Velocity‐Strain Sensitivity Near the San Jacinto Fault Zone Analyzed Through Train Tremors

Author:

Sheng Yixiao123ORCID,Brenguier Florent3ORCID,Mordret Aurélien34ORCID,Higueret Quentin3ORCID,Aubert Coralie3,Pinzon‐Rincon Laura3,Hollis Daniel5ORCID,Vernon Frank5ORCID,Wyatt Frank5,Ben‐Zion Yehuda6ORCID

Affiliation:

1. Laboratory of Seismology and Physics of the Earth's Interior School of Earth and Space Sciences University of Science and Technology of China Hefei China

2. Mengcheng National Geophysical Observatory University of Science and Technology of China Mengcheng China

3. CNRS IRD ISTerre Université Grenoble Alpes Université Savoie Mont Blanc Université Gustave Eiffel Grenoble France

4. Department of Geophysics and Sedimentary Basins Geological Survey of Denmark and Greenland Copenhagen Denmark

5. Institute of Geophysics and Planetary Physics University of California, San Diego La Jolla CA USA

6. Department of Earth Sciences and Southern California Earthquake Center University of Southern California Los Angeles CA USA

Abstract

AbstractWe utilize train tremors as P‐wave seismic sources to investigate velocity‐strain sensitivity near the San Jacinto Fault Zone. A dense nodal array deployed at the Piñon Flat Observatory is used to detect and identify repeating train energy emitted from a railway in the Coachella valley. We construct P‐wave correlation functions across the fault zone and estimate the spatially averaged dt/t versus strain sensitivity to be 6.25 × 104. Through numerical simulations, we explore how the sensitivity decays exponentially with depth. The optimal solution reveals a subsurface sensitivity of 1.2 × 105 and a depth decay rate of 0.05 km−1. This sensitivity aligns with previous findings but is toward the higher end, likely due to the fractured fault‐zone rocks. The depth decay rate, previously unreported, is notably smaller than assumed in empirical models. This raises the necessity of further investigations of this parameter, which is crucial to study stress and velocity variations at seismogenic depth.

Funder

HORIZON EUROPE European Research Council

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3