Detecting the Unseen: Understanding the Mechanisms and Working Principles of Earthquake Sensors

Author:

Tian Bingwei1ORCID,Liu Wenrui2,Mo Haozhou2,Li Wang2,Wang Yuting1,Adhikari Basanta Raj13ORCID

Affiliation:

1. Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China

2. Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu 610065, China

3. Department of Civil Engineering, Pulchowk Campus, Tribuvan University, Lalitpur 44600, Nepal

Abstract

The application of movement-detection sensors is crucial for understanding surface movement and tectonic activities. The development of modern sensors has been instrumental in earthquake monitoring, prediction, early warning, emergency commanding and communication, search and rescue, and life detection. There are numerous sensors currently being utilized in earthquake engineering and science. It is essential to review their mechanisms and working principles thoroughly. Hence, we have attempted to review the development and application of these sensors by classifying them based on the timeline of earthquakes, the physical or chemical mechanisms of sensors, and the location of sensor platforms. In this study, we analyzed available sensor platforms that have been widely used in recent years, with satellites and UAVs being among the most used. The findings of our study will be useful for future earthquake response and relief efforts, as well as research aimed at reducing earthquake disaster risks.

Funder

the Belt and Road Initiative Innovative Talent Exchange Foreign Expert Project

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT-Based Smart Sensors;Advances in Computational Intelligence and Robotics;2024-05-31

2. An Earthquake Alert system using Internet of Things;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

3. Eyes in the Sky: Drones Applications in the Built Environment under Climate Change Challenges;Drones;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3