The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion (Allium cepa L.)

Author:

Li Xiaojie123,Cao Linjiao1,Jiao Bangbang1,Yang Haifeng4,Ma Changsheng5,Liang Yi123

Affiliation:

1. Beijing Vegetable Research Center , Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China

2. Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture , Beijing, 100097, China

3. Beijing Key Laboratory of Vegetable Germplasm Improvement , Beijing, 100097, China

4. Lianyungang Academy of Agriculture Sciences,Yingbin Boulevard, Haizhou District , Lianyungang, Jiangsu, 222000, China

5. Henan Agricultural University College of Horticulture, , Zhengzhou, Henan, 450046, China

Abstract

Abstract Onion bulb color is a key breeding trait. The red bulb color is caused by the presence of anthocyanins, which are products of the flavonoid synthesis pathway. Research on flavonoid regulation in onion is lagging compared with that in other crops. AcB2 encodes a bHLH transcription factor, and its transcription is positively associated with anthocyanin accumulation and correlated with the expression of AcMYB1, which is an activator in the flavonoid biosynthetic pathway in onion. Phylogenetic analysis showed that AcB2 was grouped into the TRANSPARENT TESTA 8 (TT8) clade of the bHLH IIIf subgroup. The AcB2 protein contained an MYB-interacting region and physically interacted with AcMYB1 in yeast and tobacco leaves. AcMYB1 directly bound to the promoters of anthocyanidin synthase (AcANS) and flavonoid 3-hydroxylase 1 (AcF3H1) and activated their expression. The coexpression of AcB2 with AcMYB1 in Arabidopsis thaliana protoplasts dramatically increased the expression of AcANS and AcF3H1 compared with that under the expression of AcMYB1 alone. Transient co-overexpression of AcB2 with AcMYB1 induced anthocyanin accumulation in the epithelial cells of onion bulbs. Complementation of the Arabidopsis tt8-1 mutant with AcB2 restored pigmentation defects in tt8-1. In addition, AcB2 physically interacted with AtTT2 in yeast cells and tobacco leaves, indicating that the functions of AcB2 were similar to those of AtTT8. Together, these results demonstrated that AcB2 enhanced the function of AcMYB1 in upregulating anthocyanin biosynthesis in onion, which provided a theoretical basis for breeding onions with higher anthocyanin contents.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3