Image domain least-squares migration with a Hessian matrix estimated by non-stationary matching filters

Author:

Guo Song1ORCID,Wang Huazhong1

Affiliation:

1. Wave Phenomena and Intellectual Inversion Imaging Group (WPI), School of Ocean and Earth Science, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China

Abstract

Abstract Assuming that an accurate background velocity is obtained, least-squares migration (LSM) can be used to estimate underground reflectivity. LSM can be implemented in either the data domain or image domain. The data domain LSM (DDLSM) is not very practical because of its huge computational cost and slow convergence rate. The image domain LSM (IDLSM) might be a flexible alternative if estimating the Hessian matrix using a cheap and accurate approach. It has practical potential to analyse convenient Hessian approximation methods because the Hessian matrix is too huge to compute and save. In this paper, the Hessian matrix is approximated with non-stationary matching filters. The filters are calculated to match the conventional migration image to the demigration/remigration image. The two images are linked by the Hessian matrix. An image deblurring problem is solved with the estimated filters for the IDLSM result. The combined sparse and total variation regularisations are used to produce accurate and reasonable inversion results. The numerical experiments based on part of Sigsbee model, Marmousi model and a 2D field data set illustrate that the non-stationary matching filters can give a good approximation for the Hessian matrix, and the results of the image deblurring problem with combined regularisations can provide high-resolution and true-amplitude reflectivity estimations.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3