Novel endo-β-N-acetylglucosaminidases from Tannerella species hydrolyze multibranched complex-type N-glycans with different specificities

Author:

Takashima Shou1,Kurogochi Masaki2,Osumi Kenji2,Sugawara Shu-ichi2,Mizuno Mamoru2,Takada Yoshio1,Amano Junko1,Matsuda Akio12

Affiliation:

1. Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan

2. Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan

Abstract

AbstractEndo-β-N-acetylglucosaminidases are enzymes that hydrolyze the N,N′-diacetylchitobiose unit of N-glycans. Many endo-β-N-acetylglucosaminidases also exhibit transglycosylation activity, which corresponds to the reverse of the hydrolysis reaction. Because of these activities, some of these enzymes have recently been used as powerful tools for glycan remodeling of glycoproteins. Although many endo-β-N-acetylglucosaminidases have been identified and characterized to date, there are few enzymes that exhibit hydrolysis activity toward multibranched (tetra-antennary or more) complex-type N-glycans on glycoproteins. Therefore, we searched for novel endo-β-N-acetylglucosaminidases that exhibit hydrolysis activity toward multibranched complex-type N-glycans in this study. From database searches, we selected three candidate enzymes from Tannerella species—Endo-Tsp1006, Endo-Tsp1263 and Endo-Tsp1457—and prepared them as recombinant proteins. We analyzed the hydrolysis activity of these enzymes toward N-glycans on glycoproteins and found that Endo-Tsp1006 and Endo-Tsp1263 exhibited hydrolysis activity toward complex-type N-glycans, including multibranched N-glycans, preferentially, whereas Endo-Tsp1457 exhibited hydrolysis activity toward high-mannose-type N-glycans exclusively. We further analyzed substrate specificities of Endo-Tsp1006 and Endo-Tsp1263 using 18 defined glycopeptides as substrates, each having a different N-glycan structure. We found that Endo-Tsp1006 preferred N-glycans with galactose or α2,6-linked sialic acid residues in their nonreducing ends as substrates, whereas Endo-Tsp1263 preferred N-glycans with N-acetylglucosamine residues in their nonreducing ends as substrates.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3