Affiliation:
1. Department of Statistics, The Chinese University of Hong Kong
Abstract
AbstractUnsupervised methods, such as clustering methods, are essential to the analysis of single-cell genomic data. The most current clustering methods are designed for one data type only, such as single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq) or sc-methylation data alone, and a few are developed for the integrative analysis of multiple data types. The integrative analysis of multimodal single-cell genomic data sets leverages the power in multiple data sets and can deepen the biological insight. In this paper, we propose a coupled co-clustering-based unsupervised transfer learning algorithm (coupleCoC) for the integrative analysis of multimodal single-cell data. Our proposed coupleCoC builds upon the information theoretic co-clustering framework. In co-clustering, both the cells and the genomic features are simultaneously clustered. Clustering similar genomic features reduces the noise in single-cell data and facilitates transfer of knowledge across single-cell datasets. We applied coupleCoC for the integrative analysis of scATAC-seq and scRNA-seq data, sc-methylation and scRNA-seq data and scRNA-seq data from mouse and human. We demonstrate that coupleCoC improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. Our method coupleCoC is also computationally efficient and can scale up to large datasets.Availability: The software and datasets are available at https://github.com/cuhklinlab/coupleCoC.
Funder
Chinese University of Hong Kong
Electrochemical Society
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献