scGAL: unmask tumor clonal substructure by jointly analyzing independent single-cell copy number and scRNA-seq data

Author:

Li Ruixiang,Shi Fangyuan,Song Lijuan,Yu Zhenhua

Abstract

Abstract Background Accurately deciphering clonal copy number substructure can provide insights into the evolutionary mechanism of cancer, and clustering single-cell copy number profiles has become an effective means to unmask intra-tumor heterogeneity (ITH). However, copy numbers inferred from single-cell DNA sequencing (scDNA-seq) data are error-prone due to technically confounding factors such as amplification bias and allele-dropout, and this makes it difficult to precisely identify the ITH. Results We introduce a hybrid model called scGAL to infer clonal copy number substructure. It combines an autoencoder with a generative adversarial network to jointly analyze independent single-cell copy number profiles and gene expression data from same cell line. Under an adversarial learning framework, scGAL exploits complementary information from gene expression data to relieve the effects of noise in copy number data, and learns latent representations of scDNA-seq cells for accurate inference of the ITH. Evaluation results on three real cancer datasets suggest scGAL is able to accurately infer clonal architecture and surpasses other similar methods. In addition, assessment of scGAL on various simulated datasets demonstrates its high robustness against the changes of data size and distribution. scGAL can be accessed at: https://github.com/zhyu-lab/scgal. Conclusions Joint analysis of independent single-cell copy number and gene expression data from a same cell line can effectively exploit complementary information from individual omics, and thus gives more refined indication of clonal copy number substructure.

Funder

Key Research and Development Program of Ningxia

Natural Science Foundation of Ningxia Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3