Comprehensive analysis reveals distinct mutational signature and its mechanistic insights of alcohol consumption in human cancers

Author:

Wei Ran,Li Pengcheng,He Funan,Wei Gang,Zhou Zhan,Su Zhixi,Ni Ting

Abstract

Abstract Alcohol consumption is a critical risk factor for multiple types of cancer. A genome can be attacked and acquire numerous somatic mutations in the environment of alcohol exposure. Mutational signature has the capacity illustrating the complex somatic mutation patterns in cancer genome. Recent studies have discovered distinct mutational signatures associating with alcohol consumption in liver and esophageal cancers. However, their prevalence among diverse cancers, impact of genetic background and origin of alcohol-induced mutational signatures remain unclear. By a comprehensive bioinformatics analysis on somatic mutations from patients of four cancer types with drinking information, we identified nine mutational signatures (signatures B–J), among which signature J (similar to COSMIC signature 16) was distinctive to alcohol drinking. Signature J was associated with HNSC, ESCA and LIHC but not PAAD. Interestingly, patients with mutated allele rs1229984 in ADH1B had lower level of signature J while mutated allele rs671 in ALDH2 exhibited higher signature J abundance, suggesting acetaldehyde is one cause of signature J. Intriguingly, somatic mutations of three potential cancer driver genes (TP53, CUL3 and NSD1) were found the critical contributors for increased mutational load of signature J in alcohol consumption patients. Furthermore, signature J was enriched with early accumulated clonal mutations compared to mutations derived from late tumor growth. This study systematically characterized alcohol-related mutational signature and indicated mechanistic insights into the prevalence, origin and gene–environment interaction regarding the risk oncogenic mutations associated with alcohol intake.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3