Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast

Author:

Porcher Latarsha,Vijayraghavan SriramORCID,McCollum JamesORCID,Mieczkowski Piotr A,Saini NatalieORCID

Abstract

AbstractAcetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we usedSaccharomyces cerevisiaeto systematically delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We found that deletion of the nucleotide excision repair (NER) genes,RAD1orRAD14, led to an increase in mutagenesis upon acetaldehyde exposure. Acetaldehyde-induced mutations were dependent on translesion synthesis as well as DNA inter-strand crosslink (ICL) repair inΔrad1strains. Moreover, whole genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes in the acetaldehyde-treatedΔrad1isolates. The gCn→A mutation signature has been shown to be diagnostic of acetaldehyde exposure in yeast and in human cancers. We also demonstrated that the deletion of the two DNA-protein crosslink (DPC) repair proteases,WSS1andDDI1, also led to increased acetaldehyde-induced mutagenesis. Defects in base excision repair (BER) led to a mild increase in mutagenesis, while defects in mismatch repair (MMR), homologous recombination repair (HR) and post replicative repair pathways did not impact mutagenesis upon acetaldehyde exposure. Our results in yeast were further corroborated upon analysis of whole exome sequenced liver cancers, wherein, tumors with defects in ERCC1 and ERCC4 (NER), FANCD2 (ICL repair) or SPRTN (DPC repair) carried a higher gCn→A mutation load than tumors with no deleterious mutations in these genes. Our findings demonstrate that multiple DNA repair pathways protect against acetaldehyde-induced mutagenesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3